432 research outputs found

    X-ray photoelectron spectroscopy study of nickel and nickel-base alloy surface alterations in simulated hot corrosion conditions with emphasis on eventual application to turbine blade corrosion

    Get PDF
    Research on the high temperature oxidation and Na2SO4 induced hot corrosion of some nickel base superalloys was accomplished by using ESCA to determine the surface composition of the oxidized or corroded samples. Oxidation was carried out at 900 or 1000 C in slowly flowing O2 for samples of B-1900, NASA-TRW VIA, 713C, and IN-738. Oxidation times ranged from 0.5 to 100 hr. Hot corrosion of B-1900 was induced applying a coating of Na2SO4 to peroxidized samples, the heating to 900 C in slowly flowing O2. For oxidized samples, the predominant type of scale formed by each superalloy was determined, and a marked surface enrichment of Ti was found in each case. For corroded samples, the transfer of significant amounts of material from the oxide layer to the surface of the salt layer was observed to occur long before the onset of accelerating weight-gain. Changes in surface composition were observed to coincide with the beginning of accelerating corrosion, the most striking of which was a tenfold decrease in the sulfur to sodium ration and an increase in the Cr(VI) ratio

    Verification of temporal properties of processes in a setting with data

    Get PDF
    We define a value-based modal mu-calculus, built from first-order formulas, modalities, and fixed point operators parameterized by data variables, which allows to express temporal properties involving data. We interpret this logic over muCRL terms defined by linear process equations. The satisfaction of a temporal formula by a muCRL term is translated to the satisfaction of a first-order formula containing parameterized fixed point operators. We provide proof rules for these fixed point operators and show their applicability on various examples

    From AADL Model to LNT Specification

    Get PDF
    The verification of distributed real-time systems designed by architectural languages such as AADL (Architecture Analysis and Design Language) is a research challenge. These systems are often used in safety- critical domains where one mistake can result in physical damages and even life loss. In such domains, formal methods are a suitable solution for rigorous analysis. This paper studies the formal verification of distributed real-time systems modelled with AADL. We transform AADL model to another specification formalism enabling the verification. We choose LNT language which is an input to CADP toolbox for formal analysis. Then, we illustrate our approach with the ”Flight Control System” case study

    Organized condensation of worm-like chains

    Full text link
    We present results relevant to the equilibrium organization of DNA strands of arbitrary length interacting with a spherical organizing center, suggestive of DNA-histone complexation in nucleosomes. We obtain a rich phase diagram in which a wrapping state is transformed into a complex multi-leafed, rosette structure as the adhesion energy is reduced. The statistical mechanics of the "melting" of a rosette can be mapped into an exactly soluble one-dimensional many-body problem.Comment: 15 pages, 2 figures in a pdf fil

    Improving the model checking of strategies under partial observability and fairness constraints

    Get PDF
    Reasoning about strategies has been a concern for several years, and many extensions of Alternating-time Temporal Logic have been proposed. One extension, ATLKirF , allows the user to reason about the strategies of the agents of a system under partial observability and unconditional fairness constraints. However, the existing model-checking algorithm for ATLKirF is inefficient when the user is only interested in the satisfaction of a formula in a small subset of states, such as the set of initial states of the system. We propose to generate fewer strategies by only focusing on partial strategies reachable from this subset of states, reducing the time needed to perform the verification. We also describe several practical improvements to further reduce the verification time and present experiments showing the practical impact of the approach

    Vegetal diamine oxidase alleviates histamine-induced contraction of colonic muscles

    Get PDF
    Excess of histamine in gut lumen generates a pronounced gastrointestinal discomfort, which may include diarrhea and peristalsis dysfunctions. Deleterious effects of histamine can be alleviated with antihistamine drugs targeting histamine receptors. However, many antihistamine agents come with various undesirable side effects. Vegetal diamine oxidase (vDAO) might be a relevant alternative owing to its histaminase activity. Mammalian intestinal mucosa contains an endogenous DAO, yet possessing lower activity compared to that of vDAO preparation. Moreover, in several pathological conditions such as inflammatory bowel disease and irritable bowel syndrome, this endogenous DAO enzyme can be lost or inactivated. Here, we tested the therapeutic potential of vDAO by focusing on the well-known effect of histamine on gut motility. Using ex vivo and in vitro assays, we found that vDAO is more potent than commercial anti-histamine drugs at inhibiting histamine-induced contraction of murine distal colon muscles. We also identified pyridoxal 5′-phosphate (the biologically active form of vitamin B6) as an effective enhancer of vDAO antispasmodic activity. Furthermore, we discovered that rectally administered vDAO can be retained on gut mucosa and remain active. These observations make administration of vDAO in the gut lumen a valid alternative treatment for histamine-induced intestinal dysfunctions

    Formal Analysis of a Fault-Tolerant Routing Algorithm for a Network-on-Chip

    Get PDF
    International audienceA fault-tolerant routing algorithm in Network-on-Chip architectures provides adaptivity for on-chip communications. Adding fault-tolerance adaptivity to a routing algorithm increases its design complexity and makes it prone to deadlock and other problems if improperly implemented. Formal verification techniques are needed to check the correctness of the design. This paper performs formal analysis on an extension of the link-fault tolerant Network-on-Chip architecture introduced by Wu et al. that supports multiflit wormhole routing. This paper describes several lessons learned during the process of constructing a formal model of this routing architecture. Finally, this paper presents how the deadlock freedom and tolerance to a single-link fault is verified for a two-by-two mesh version of this routing architecture

    A model of inversion of DNA charge by a positive polymer: fractionization of the polymer charge

    Full text link
    Charge inversion of a DNA double helix by an oppositely charged flexible polyelectrolyte (PE) is considered. We assume that, in the neutral state of the DNA-PE complex, each of the DNA charges is locally compensated by a PE charge. When an additional PE molecule is adsorbed by DNA, its charge gets fractionized into monomer charges of defects (tails and arches) on the background of the perfectly neutralized DNA. These charges spread all over the DNA eliminating the self-energy of PE. This fractionization mechanism leads to a substantial inversion of the DNA charge, a phenomenon which is widely used for gene delivery.Comment: 4 pages, 2 figures. Improved figures and various corrections to tex
    • …
    corecore